TMS320F2812与CPLD的视频采集系统接口设计

来源:本站
导读:目前正在解读《TMS320F2812与CPLD的视频采集系统接口设计》的相关信息,《TMS320F2812与CPLD的视频采集系统接口设计》是由用户自行发布的知识型内容!下面请观看由(电工技术网 - www.9ddd.net)用户发布《TMS320F2812与CPLD的视频采集系统接口设计》的详细说明。
简介:介绍基于TMS320F2812和CPLD的数字视频采集系统的接口设计。该系统采用同步分离电路、TMS320F2812、EPM7128、TMS320C6416、IDE硬盘存储器以及显示器接口等芯片。

引言

随着现代视频采集处理技术的快速发展,视频采集系统接口在智能防盗、智能交通、银行、智能小区、医疗行业以及消防报警等系统中的应用越来越普遍。本文设计的是一个以TMS320F2812为视频A/D转换器,CPLD为时序和逻辑控制电路,TMS320C6416为图像处理算法及控制芯片,IDE硬盘为大容量存储器,2个SDRAM为图像帧存储器的硬件接口电路。与其他嵌入式视频采集系统设计相比,该设计具有采集速度高、功耗低,能进行图像实时采集和处理,能大容量存储图像等特点。

1视频采集系统原理及接口设计

1.1视频采集系统原理

视频采集系统原理如图1所示。按电路功能,系统可分为图像输入模块、图像存储模块、图像解码模块、CPLD控制模块、DSP图像处理与显示接口模块。

摄像头输出标准的复合模拟视频信号经过钳位放大(EL4089)、同步信号分离(LM1881)、自增益控制以及A/D转换后,输出YUV422的数字信号,行、场同步信号,奇偶场信号以及像素时钟信号等图像数据。图像输入模块将模拟视频信号进行行、场同步分离,并将行、场同步信号输出到CPLD(EMP7128)作为基准信号。CPLD作为逻辑时序控制器,用于完成数字视频信号的存储与时序控制,并以中断方式通知DSP(TMS320F2812)读取数据。DSP将SDRAM中的视频数据读出,并写入大容量的IDE硬盘存储器中,实现视频数据的存储;且根据存储的图像算法,对图像进行校正、滤波、压缩、分割、特征提取以及识别等处理。最后,将处理后的视频信号传送给显示器实时显示。

TMS320F2812与CPLD的视频采集系统接口设计

图1视频采集系统原理

1.2接口设计

一般情况下,视频采集经过A/D转换后,需要经过图像预处理、特征提取、图像分割与识别等操作,才输出到显示器显示。这些功能的实现都需要DSP来完成。

图像预处理包括图像调整和图像压缩。图像调整是指对视频图像进行亮度、饱和度、色度以及对比度的调整,使图像清晰、颜色明显;而图像压缩是指根据需要设定视频采集分辨率,通过压缩可以提高系统的响应速度。特征提取是指使图像从视频背景中分离出来的过程。图像分割是指对特征提取得到的图像进行区域划分的过程。最简单的图像分割方法是,将图像中的所有像素划分为目标像素和非目标像素,用数字1表示目标像素点,数字0表示其他像素点。

图像输入模块。图像的输入由模拟摄像头完成。摄像头输出的视频信号为标准的复合视频信号CVBS,必须经过视频解码芯片和A/D变换后进入数字系统才有效。模拟视频信号包含图像信号、行同步信号、场同步信号、像素时钟等信号。

图像存储模块。采用2片外部存储器SDRAMA和SDRAMB,用于存储数字视频信号,并将数据实时地传送给TMS320C6416进行数据处理。本系统采取两片存储器轮换读写的方式。

图像解码模块。负责将摄像头输出的模拟视频信号转换成Y∶U∶V=4∶2∶2的数字视频信号;并将图像逐帧存入SDRAM中,通过中断通知DSP读取数据。该图像解码模块采用的是TI公司的DSP芯片TMS320F2812。模拟信号经过处理后从TMS320F2812的系统外部接口XINTF的引脚XD[15...0]输出YUV422数字信号,YUV422信号输出到TMS320C6416的VP0端口,再通过多通道缓冲端口McBSP来控制TMS320F2812的工作。TMS320F2812与TMS320C6416的连接如图2所示。

TMS320F2812与CPLD的视频采集系统接口设计

图2TMS320F2812与TMS320C6416的连接

CPLD控制模块。主要实现系统的逻辑控制和存储器地址译码功能。CPLD将经过同步分离后的行、场同步信号转换成YUV422格式的数字信号,同时产生SDRAM的地址、读写选通等信号。由CPLD输出的YUV422格式的数字信号按像素逐个存入2片存储器中,其中2片SDRAM以乒乓方式工作。这里CPLD选用Altera公司的EPM7128芯片。

DSP图像处理与显示接口模块。选用TI公司的DSP芯片TMS320C6416。该芯片有HPI和EMIF接口,2个外部总线接口EMIFA和EMIFB的时钟为100 MHz,2片存储器被映射到这2个总线上。其中,SDRAMA映射到EMIFA,256 MB,64位宽,800 MB/s的瞬时突发率;SDRAMB映射到EMIFB,8 MB,16位宽,200 MB/s的瞬时突发率。可以方便地与其他处理器连接,有实时的硬件调试功能。开发工具包含CCS环境、DSP BIOS、JTAG扫描控制器等。CPLD写完一帧图像后发中断信号通知DSP读取,DSP执行中断服务程序从SRAM中将一帧图像读入,随即进行处理。其模块与显示器接口的连接如图3所示。

TMS320F2812与CPLD的视频采集系统接口设计

图3TMS320C6416与显示器接口的连接

FPGA用于对FIFO的读/写时序与逻辑控制。FIFO的写时序信号由TMS320C6416的EMIF外部总线产生。通过DMA方式将视频数据写入FIFO缓存器中,再通过DAC输出视频编码器将YUV422格式的数字信号转换成SVGA格式的RGB信号格式,并将它输出到显示器上。输出VGA分辨率为800×600(SVGA制),但在TMS320C6416存储器中的像素格式为RGB565。每个像素存储在16位的存储器中,其SVGA输出像素格式的存储方式如下:

TMS320F2812与CPLD的视频采集系统接口设计

2视频采集系统接口软件设计

TMS320C6416上电后进行初始化,即对状态寄存器ST0、ST1,处理器模式控制寄存器PMST和时钟模式寄存器CLKMD等进行适当的配置。TMS320C6416内部的boot程序按照外部中断或者通用I/O接口的设置,将Flash中的程序读到TMS320C6416内部的RAM中,并运行程序;然后通过它的McBSP多通道缓冲口,将控制字写入TMS320F2812的寄存器中,从而设置其工作模式。TMS320C6416开始启动采集数据,并从SDRAM中读取数据,随后进行视频信号处理。CPLD会对同步分离电路LM1881输出的各种视频信号进行判断与控制。当CPLD产生SDRAM的地址写选通信号后,会将一帧数据写入SDRAM;然后发中断信号给TMS320C6416,以通知TMS320C6416可以读取数据,并进行数据压缩、编码、校正、滤波、分割与特征提取等;同时写入到IDE硬盘中,并送显示器进行显示。

摄像头输出2路复合模拟视频信号:一路送给钳位电路进行放大,然后输出到TMS320F2812进行A/D转换,输出需要的YUV422数字视频信号。由CPLD对它进行逻辑与时序控制,TMS320F2812通过系统外部接口将数据传送给TMS320C6416进行图像处理并显示。另一路经过LM1881同步分离电路输出模拟视频行、场同步信号,再通过CPLD产生YUV422数字视频信号,并逐帧存入SDRAMA和SDRAMB中。SDRAMA和SDRAMB的地址写时序信号由行、场视频信号产生。其读信号由DSP的EMIF控制信号产生。当CPLD向SDRAMA写入一帧图像数据时,发中断信号给TMS320C6416。TMS320C6416将从SDRAMB读取一帧图像数据,同时写入IDE硬盘中,并且送显示器显示。当SDRAMA存满图像且SDRAMB中的图像数据被读完时,CPLD进行读/写地址信号切换。这样,CPLD将向SDRAMB存入图像数据,而DSP将从SDRAMA中读取图像数据。如此循环,可以提高图像的存储/读取速度,以及实现实时图像处理与显示的效果。视频采集流程如图4所示。

TMS320F2812与CPLD的视频采集系统接口设计

图4 视频采集流程

2.1 TMS320F2812 ADC模块初始化设计

本系统可以对TMS320F2812的ADC模块进行编程,即对ADC模块中的寄存器及工作模式进行初始化配置,并且可以实现升级来提高采集的精确度和速度。ADC模块中有16个输入通道口,包括8个A口和8个B口。2个通道口可以级连工作,此时16个通道由排序器SEQ控制和管理。模块中有2个多路选择开关,用来选择8个通道中的任何一个通道进行A/D转换。如果排序器转换完成,就将所转换的通道的值存储到相应的ADCRESULT寄存器中。TMS320F2812中的ADC内部含有2个采样保持(S/H)的12位ADC核心。ADC的采样率为12.5 Msps,即能实现80 ns采样一次。在自动排序模式下,允许对同个通道口进行多次采样与A/D转换,即能进行过采样算法的A/D转换。与传统单次转换相比较,具有采样和转换精度高的优点。其A/D转换工作流程如图5所示。

TMS320F2812与CPLD的视频采集系统接口设计

图5TMS320F2812 A/D转换工作流程

2.2TMS320C6416与显示接口软件设计

TMS320F2812与CPLD的视频采集系统接口设计

图6TMS320C6416与显示接口流程

TMS320C6416与显示接口流程如图6所示。其中,DAC编码的作用是,将数据转换为PAL或NTSC格式。

3实验仿真结果

本文给出了Quartus II软件下,TMS320C6416将数据传送给数据缓冲器FIFO的时序仿真图。仿真结果清晰明了,有利于整个系统的数据分析与处理。其中,包括时钟信号clock、数据写脉冲信号wrreq、数据读脉冲信号rdreq、数据清空信号reset、数据输入信号datain、数据输出信号dataout,以及数据满信号full和数据空信号empty。仿真结果如图7所示。

TMS320F2812与CPLD的视频采集系统接口设计

图7QuartusII的FIFO时序仿真结果

结语

本系统给出了基于TMS320F2812和CPLD的数字视频采集系统接口设计方案,采用存储器的2帧存储方式存储图像数据,可实现实时的图像采集、存储及处理功能。由于用到TMS320F2812芯片,因此能应用于工业控制的视频图像采集系统中。本系统不需要专门的视频解码器,也可对TMS320F2812与TMS320C6416进行软件编程,使得系统的应用更灵活和易于升级。

提醒:《TMS320F2812与CPLD的视频采集系统接口设计》最后刷新时间 2024-03-14 00:57:22,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《TMS320F2812与CPLD的视频采集系统接口设计》该内容的真实性请自行鉴别。