自适用控制A/D转换编码电路的设计与应用

来源:本站
导读:目前正在解读《自适用控制A/D转换编码电路的设计与应用》的相关信息,《自适用控制A/D转换编码电路的设计与应用》是由用户自行发布的知识型内容!下面请观看由(电工技术网 - www.9ddd.net)用户发布《自适用控制A/D转换编码电路的设计与应用》的详细说明。
简介:本文介绍了一种自适应控制A/D转换编码电路,着重分析了调理电路自动增益控制、误差补偿与A/D转换编码原理,探讨了该电路的局限性,给出了自适应控制A/D转换编码电路设计方案及其与微处理器的接口应用。

在数据采集系统中,通常需要尽量将模拟信号子样放大到接近A/D转换电路的满度值,以充分利用A/D转换器的分辨能力。然而,在某些应用领域,一方面信号子样有效幅值输入范围较小,另一方面信号又极其微弱,因此,一般需要调理电路具备100dB以上的信号放大能力,而运放和采样装置引入的失调可能高达100~200μV,同时还具有一定的时、热漂移。而在某些应用领域,信号子样有效幅值输入范围又可能较大。显然,固定增益信号调理电路无法兼顾对上述两类信号子样的高分辨率A/D转换。为提高信号调理电路对信号的自适应能力,设计者往往希望系统能根据信号的强弱自动调整增益并实现高保真信号调理。本文介绍一种采用自适应控制A/D转换编码电路来实现信号自适应调理的方法。该方法同时具有自动增益控制、失调与温漂自动补偿和A/D转换编码控制等功能。

1 自动控制循环放大及误差补偿

利用图1所示电路可直接完成对±10μV~±5V信号的自动增益放大并实现12位A/D转换编码,并在信号调理过程中使增益随信号的强弱自动调节,运放失调误差可被自动补偿,从而实现极高的信噪比。该电路主要由模拟开关S1~S10、运放OP1与OP2(主放大器、精密电平比较器)、比较器OP3与OP4、精密电阻R1~R3及Rf、采样保持器A1与A2构成。OP1与OP2选择低漂移运放,OP3、OP4为普通集电极开路输出比较器。电路工作过程为信号及误差采样、自动增益控制循环放大和循环编码A/D转换3个阶段。

1.1 信号及误差采样

一般放大电路主要存在三个误差:主运放OP1的失调误差E0、采保器A1与A2的误差E1和E2。E0、E1及E2均折算于OP1同相输入端。

在第1采样周期,开关S1、S4及S10闭合,其它断开。电路完成对E0、E1的采样。OP1同相组态增益K1=1+Rf/R1=7/4。此周期结束后,采保器A1的输出电压为:

Vp=(7/4)E0+E1

在第2采样周期,开关S2、S7及S11闭合,其它断开。OP1同相组态增益K2=1+Rf/R2=2。这时第一采样周期输出Vp被放大,同时再计入E0、E1的影响,采保器A2的输出电压为:

VQ=2Vp+2E0+E2

输入信号采样过程在第3周期内完成。此时,开关S3、S5及S10闭合,其它断开。对误差电压VQ而言,OP1呈反相组态,反相增益K3=-(Rf/R3)=-(2/3)。对信号子样VE,OP1呈同相组态,同相增益K4=1-K3=5/3。此周期结束后,电容C1上的电压为:

VM=(5/3)VE+(5/3)E0-(2/3)VQ

1.2 自动增益控制循环放大与误差补偿

前三个周期完成对输入信号VE及三个误差信号E0、E1、E2的采集,并将其结果保存于电容C1中。从第4周期开始,将通过对电子开关S6、S10、S7、S11的交替切换完成对输入电压的循环放大。在第4、6、8、…等周期,S7、S11闭合,在第5、7、9、…等周期,S6、S10闭合。在整个循环放大过程中,S2一直闭合,主运放OP1的同相组态增益为2。电子开关经n次交替切换后,原输入信号子样被放大(5/3)×2 n倍。由于完成一次循环放大的时间很短,因而时漂可以忽略。在对信号进行循环放大的同时,误差也参加循环,正是前三个周期对误差、信号的特殊采集方法确保了失调误差

提醒:《自适用控制A/D转换编码电路的设计与应用》最后刷新时间 2024-03-14 01:20:19,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《自适用控制A/D转换编码电路的设计与应用》该内容的真实性请自行鉴别。