模块电源的散热应对措施

来源:本站
导读:目前正在解读《模块电源的散热应对措施》的相关信息,《模块电源的散热应对措施》是由用户自行发布的知识型内容!下面请观看由(电工技术网 - www.9ddd.net)用户发布《模块电源的散热应对措施》的详细说明。
简介:本篇文章以实例为基准,分析一个设计方案中的模块电源散热问题。本文的中的模块采用100W,Vin24VVout5V,采用单管正激电路,使用的是UC3843B芯片控制,没有采用有源嵌位和同步整流,工作频率为300KHZ。

运行后发现其并不能长期实际工作在100W,长期工作会使MOSFET或者次级二极管被热击穿,那么应该用怎样的办法让它可以长期工作在100W以下?

目前试验了以下两种方法:

1、增加MOSFET:使用多MOSFET并联,并更改驱动,3843B驱动不了多MOSFET,但是效果并不好,不仅增加成本,还没解决问题。而且多个MOSFET并不能同时导通,总会有先有后,所以总是会有一个MOSFET击穿。

2、增加次级二极管,使用多个并联,效果与方案1类似,也不理想。

下面咱们来说说解决方法,通常来说器件的散热性能与绝缘材料的导热性能、压紧力、壳的导热性能、面积、壳外部的风流条件有关,可以从这几点上下手改善。

或许也有人想到了同步整流技术,但即便使用了同步整流技术,效率也不可能在提高多少,该设计目前已经达到了90%的效率,大多数达到89%。用同步整流效率不会更高多少了,那样还是有很大的损耗,散热还是问题。

或者可以从驱动波形的角度出发,如果驱动能力不够,可是考虑加推挽驱动电路。或者可以降低电源的频率,来减小开关损耗。另外一点就是变压器的漏感,如果漏感大,那么失去的功率也就不少,发热量也就不会小。电源过热,容易造成热击穿(不可恢复),100W还不加散热器,散热肯定是一大问题。

本篇文章从各个角度出发,对模块电源的散热问题进行了全面的分析,通过实例的引入方便大家理解。希望大家能在本篇文章给出的分析当中找到自己想要的答案。

提醒:《模块电源的散热应对措施》最后刷新时间 2024-03-14 01:04:33,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《模块电源的散热应对措施》该内容的真实性请自行鉴别。